Eurocode 4 — Design of composite steel and concrete structures —

Part 1-2: General rules — Structural fire design
National foreword

This British Standard is the UK implementation of EN 1994-1-2:2005, incorporating corrigendum July 2008.

The start and finish of text introduced or altered by corrigendum is indicated in the text by tags. Text altered by CEN corrigendum July 2008 is indicated in the text by [45] [45].

The structural Eurocodes are divided into packages by grouping Eurocodes for each of the main materials, concrete, steel, composite concrete and steel, timber, masonry and aluminium; this is to enable a common date of withdrawal (DOW) for all the relevant parts that are needed for a particular design. The conflicting national standards will be withdrawn at the end of the coexistence period, after all the EN Eurocodes of a package are available.

Following publication of the EN, there is a period of two years allowed for the national calibration period during which the national annex is issued, followed by a three year coexistence period. During the coexistence period Member States will be encouraged to adapt their national provisions to withdraw conflicting national rules before the end of the coexistence period. The Commission in consultation with Member States is expected to agree the end of the coexistence period for each package of Eurocodes.

At the end of this coexistence period, the national standard(s) will be withdrawn.

In the case of BS EN 1994-1-2:2005, there are no corresponding national standards.

The UK participation in its preparation was entrusted by Technical Committee B/525, Building and civil engineering structures, to Subcommittee B/525/4, Composite structures.

A list of organizations represented on this subcommittee can be obtained on request to its secretary.

Where a normative part of this EN allows for a choice to be made at the national level, the range and possible choice will be given in the normative text, and a note will qualify it as a Nationally Determined Parameter (NDP). NDPs can be a specific value for a factor, a specific level or class, a particular method or a particular application rule if several are proposed in the EN.

Amendments/corrigenda issued since publication

<table>
<thead>
<tr>
<th>Date</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>28 February 2010</td>
<td>Implementation of CEN corrigendum July 2008</td>
</tr>
</tbody>
</table>

© BSI 2010
To enable EN 1994-1-2 to be used in the UK, the NDPs will be published in a national annex, which will be made available by BSI in due course, after public consultation has taken place.

This publication does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application.

Compliance with a British Standard cannot confer immunity from legal obligations.
Eurocode 4 - Design of composite steel and concrete structures
- Part 1-2: General rules - Structural fire design

This European Standard was approved by CEN on 4 November 2004.

CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the Central Secretariat or to any CEN member.

This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CEN member into its own language and notified to the Central Secretariat has the same status as the official versions.

CEN members are the national standards bodies of Austria, Belgium, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Slovakia, Slovenia, Spain, Sweden, Switzerland and United Kingdom.
Contents

<table>
<thead>
<tr>
<th>Foreword</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Background of the Eurocode programme</td>
<td>5</td>
</tr>
<tr>
<td>Status and field of application of Eurocodes</td>
<td>5</td>
</tr>
<tr>
<td>National Standards implementing Eurocodes</td>
<td>6</td>
</tr>
<tr>
<td>Links between Eurocodes and harmonised technical specifications (ENs and ETAs) for products</td>
<td>7</td>
</tr>
<tr>
<td>Additional information specific for EN 1994-1-2</td>
<td>7</td>
</tr>
<tr>
<td>National annex for EN 1994-1-2</td>
<td>10</td>
</tr>
</tbody>
</table>

Section 1 General

1.1 Scope ... 11
1.2 Normative references ... 13
1.3 Assumptions .. 15
1.4 Distinction between Principles and Application Rules .. 15
1.5 Definitions .. 15
1.5.1 Special terms relating to design in general........ 15
1.5.2 Terms relating to material and products properties .. 16
1.5.3 Terms relating to heat transfer analysis 16
1.5.4 Terms relating to mechanical behaviour analysis .. 16
1.6 Symbols ... 16

Section 2 Basis of design

2.1 Requirements .. 26
2.1.1 Basic requirements ... 26
2.1.2 Nominal fire exposure 26
2.1.3 Parametric fire exposure 27
2.2 Actions ... 27
2.3 Design values of material properties 27
2.4 Verification methods .. 28
2.4.1 General .. 28
2.4.2 Member analysis ... 29
2.4.3 Analysis of part of the structure 30
2.4.4 Global structural analysis 31

Section 3 Material properties

3.1 General ... 31
3.2 Mechanical properties ... 31
3.2.1 Strength and deformation properties of structural steel .. 31
3.2.2 Strength and deformation properties of concrete .. 33
3.2.3 Reinforcing steels ... 35
3.3 Thermal properties .. 36
3.3.1 Structural and reinforcing steels 36
3.3.2 Normal weight concrete 39
3.3.3 Light weight concrete 41
3.3.4 Fire protection materials 42
3.4 Density ... 42
Section 4 Design procedures ...43

4.1 Introduction ...43
4.2 Tabulated data ..44
 4.2.1 Scope of application ..44
 4.2.2 Composite beam comprising steel beam with partial concrete encasement45
 4.2.3 Composite columns ..47
4.3 Simple Calculation Models ...51
 4.3.1 General rules for composite slabs and composite beams ...51
 4.3.2 Unprotected composite slabs ...51
 4.3.3 Protected composite slabs ...52
 4.3.4 Composite beams ..53
 4.3.5 Composite columns ..61
4.4 Advanced calculation models ..64
 4.4.1 Basis of analysis ...64
 4.4.2 Thermal response ...65
 4.4.3 Mechanical response ...65
 4.4.4 Validation of advanced calculation models ...65

Section 5 Constructional details ...66

5.1 Introduction ...66
5.2 Composite beams ..66
5.3 Composite columns ...67
 5.3.1 Composite columns with partially encased steel sections ..67
 5.3.2 Composite columns with concrete filled hollow sections ...67
5.4 Connections between composite beams and columns ..68
 5.4.1 General ...68
 5.4.2 Connections between composite beams and composite columns with steel sections encased in concrete ..69
 5.4.3 Connections between composite beams and composite columns with partially encased steel sections ...70
 5.4.4 Connections between composite beams and composite columns with concrete filled hollow sections ...70

Annex A (INFORMATIVE) Stress-strain relationships at elevated temperatures for structural steels 72
Annex B (INFORMATIVE) Stress-strain relationships at elevated temperatures for concrete with siliceous aggregate 75
Annex C (INFORMATIVE) Concrete stress-strain relationships adapted to natural fires with a decreasing heating branch for use in advanced calculation models 77
Annex D (INFORMATIVE) Model for the calculation of the fire resistance of unprotected composite slabs exposed to fire beneath the slab according to the standard temperature-time curve 79

D.1 Fire resistance according to thermal insulation ...79
D.2 Calculation of the sagging moment resistance $M_{h,Rd}^+$..80
D.3 Calculation of the hogging moment resistance $M_{h,Rd}^-$..82
D.4 Effective thickness of a composite slab ..84
D.5 Field of application ...85
Annex E (INFORMATIVE) Model for the calculation of the sagging and hogging moment resistances of a steel beam connected to a concrete slab and exposed to fire beneath the concrete slab.

E.1 Calculation of the sagging moment resistance $M_{fi,Rd}$
E.2 Calculation of the hogging moment resistance $M_{fi,Rd}$ at an intermediate support (or at a restraining support)
E.3 Local resistance at supports
E.4 Vertical shear resistance

Annex F (INFORMATIVE) Model for the calculation of the sagging and hogging moment resistances of a partially encased steel beam connected to a concrete slab and exposed to fire beneath the concrete slab according to the standard temperature-time curve.

F.1 Reduced cross-section for sagging moment resistance $M_{fi,Rd}$
F.2 Reduced cross-section for hogging moment resistance $M_{fi,Rd}$
F.3 Field of application

Annex G (INFORMATIVE) Balanced summation model for the calculation of the fire resistance of composite columns with partially encased steel sections, for bending around the weak axis, exposed to fire all around the column according to the standard temperature-time curve.

G.1 Introduction
G.2 Flanges of the steel profile
G.3 Web of the steel profile
G.4 Concrete
G.5 Reinforcing bars
G.6 Calculation of the axial buckling load at elevated temperatures
G.7 Eccentricity of loading
G.8 Field of application

Annex H (INFORMATIVE) Simple calculation model for concrete filled hollow sections exposed to fire all around the column according to the standard temperature-time curve.

H.1 Introduction
H.2 Temperature distribution
H.3 Design axial buckling load at elevated temperature
H.4 Eccentricity of loading
H.5 Field of application

Annex I (INFORMATIVE) Planning and evaluation of experimental models

I.1 Introduction
I.2 Test for global assessment
I.3 Test for partial information