Eurocode 3: Design of steel structures —

Part 1-1: General rules and rules for buildings
National foreword

This British Standard is the UK implementation of EN 1993-1-1:2005, incorporating corrigenda February 2006 and April 2009. It supersedes DD ENV 1993-1-1:1992, which is withdrawn.

The start and finish of text introduced or altered by corrigendum is indicated in the text by tags. Tags indicating changes to CEN text carry the number of the CEN corrigendum. For example, text altered by February 2006 corrigendum is indicated by [29] [25].

The structural Eurocodes are divided into packages by grouping Eurocodes for each of the main materials: concrete, steel, composite concrete and steel, timber, masonry and aluminium; this is to enable a common date of withdrawal (DOW) for all the relevant parts that are needed for a particular design. The conflicting national standards will be withdrawn at the end of the co-existence period, after all the EN Eurocodes of a package are available.

Following publication of the EN, there is a period allowed for national calibration during which the National Annex is issued, followed by a co-existence period of a maximum three years. During the co-existence period Member States are encouraged to adapt their national provisions. At the end of this co-existence period, the conflicting parts of national standard(s) will be withdrawn.

In the UK, the primary corresponding national standards are:

BS 449-2:1969, Specification for the use of structural steel in building. Metric units

BS 5950-1:2000, Structural use of steelwork in building. Code of practice for design. Rolled and welded sections

BS EN 1993-1-1 partially supersedes BS 449-2, BS 5400-3, and BS 5950-1, which will be withdrawn by March 2010.

The UK participation in its preparation was entrusted by Technical Committee B/525, Building and civil engineering structures, to Subcommittee B/525/31, Structural use of steel.

A list of organizations represented on this subcommittee can be obtained on request to its secretary.

Where a normative part of this EN allows for a choice to be made at the national level, the range and possible choice will be given in the normative text as Recommended Values, and a note will qualify it as a Nationally Determined Parameter (NDP). NDPs can be a specific value for a factor, a specific level or class, a particular method or a particular application rule if several are proposed in the EN.

Amendments/corrigenda issued since publication

<table>
<thead>
<tr>
<th>Amd. No.</th>
<th>Date</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>16568</td>
<td>29 September 2006</td>
<td>Implementation of CEN corrigendum February 2006</td>
</tr>
<tr>
<td>Corrigendum No. 1</td>
<td>28 February 2010</td>
<td>Implementation of CEN corrigendum April 2009</td>
</tr>
</tbody>
</table>
To enable EN 1993-1-1 to be used in the UK, the NDPs have been published in a National Annex, which has been issued separately by BSI.

This publication does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application.

Compliance with a British Standard cannot confer immunity from legal obligations.

This European Standard was approved by CEN on 16 April 2004.

CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the Central Secretariat or to any CEN member.

This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CEN member into its own language and notified to the Central Secretariat has the same status as the official versions.

CEN members are the national standards bodies of Austria, Belgium, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Slovakia, Slovenia, Spain, Sweden, Switzerland and United Kingdom.

Management Centre: rue de Stassart, 36 B-1050 Brussels

© 2005 CEN All rights of exploitation in any form and by any means reserved worldwide for CEN national Members.

Contents

1 General ... 9
 1.1 Scope .. 9
 1.2 Normative references .. 10
 1.3 Assumptions ... 11
 1.4 Distinction between principles and application rules .. 11
 1.5 Terms and definitions ... 11
 1.6 Symbols .. 12
 1.7 Conventions for member axes ... 20

2 Basis of design .. 22
 2.1 Requirements ... 22
 2.1.1 Basic requirements ... 22
 2.1.2 Reliability management ... 22
 2.1.3 Design working life, durability and robustness .. 22
 2.2 Principles of limit state design .. 23
 2.3 Basic variables ... 23
 2.3.1 Actions and environmental influences ... 23
 2.3.2 Material and product properties ... 23
 2.4 Verification by the partial factor method ... 23
 2.4.1 Design values of material properties ... 23
 2.4.2 Design values of geometrical data .. 23
 2.4.3 Design resistances .. 24
 2.4.4 Verification of static equilibrium (EQU) .. 24
 2.5 Design assisted by testing ... 24

3 Materials .. 25
 3.1 General .. 25
 3.2 Structural steel ... 25
 3.2.1 Material properties ... 25
 3.2.2 Ductility requirements .. 25
 3.2.3 Fracture toughness ... 25
 3.2.4 Through-thickness properties ... 27
 3.2.5 Tolerances ... 28
 3.2.6 Design values of material coefficients ... 28
 3.3 Connecting devices ... 28
 3.3.1 Fasteners ... 28
 3.3.2 Welding consumables .. 28
 3.4 Other prefabricated products in buildings ... 28

4 Durability .. 28

5 Structural analysis .. 29
 5.1 Structural modelling for analysis .. 29
 5.1.1 Structural modelling and basic assumptions .. 29
5.1.2 Joint modelling ... 29
5.1.3 Ground-structure interaction ... 29
5.2 Global analysis ... 30
5.2.1 Effects of deformed geometry of the structure 30
5.2.2 Structural stability of frames ... 31
5.3 Imperfections ... 32
5.3.1 Basis ... 32
5.3.2 Imperfections for global analysis of frames 33
5.3.3 Imperfection for analysis of bracing systems 36
5.3.4 Member imperfections ... 38
5.4 Methods of analysis considering material non-linearities 38
5.4.1 General .. 38
5.4.2 Elastic global analysis ... 39
5.4.3 Plastic global analysis ... 39
5.5 Classification of cross sections .. 40
5.5.1 Basis ... 40
5.5.2 Classification .. 40
5.6 Cross-section requirements for plastic global analysis 41
6 Ultimate limit states .. 45
6.1 General ... 45
6.2 Resistance of cross-sections ... 45
6.2.1 General .. 45
6.2.2 Section properties ... 46
6.2.3 Tension .. 49
6.2.4 Compression ... 49
6.2.5 Bending moment .. 50
6.2.6 Shear ... 50
6.2.7 Torsion .. 52
6.2.8 Bending and shear ... 53
6.2.9 Bending and axial force .. 54
6.2.10 Bending, shear and axial force 56
6.3 Buckling resistance of members .. 56
6.3.1 Uniform members in compression 56
6.3.2 Uniform members in bending ... 60
6.3.3 Uniform members in bending and axial compression 64
6.3.4 General method for lateral and lateral torsional buckling of structural components 65
6.3.5 Lateral torsional buckling of members with plastic hinges 67
6.4 Uniform built-up compression members 69
6.4.1 General .. 69
6.4.2 Laced compression members .. 71
6.4.3 Battened compression members 72
6.4.4 Closely spaced built-up members 74
7 Serviceability limit states ... 75
7.1 General ... 75
7.2 Serviceability limit states for buildings 75
7.2.1 Vertical deflections ... 75
7.2.2 Horizontal deflections ... 75
7.2.3 Dynamic effects .. 75

Annex A [informative] – Method 1: Interaction factors k_{ij} for interaction formula in 6.3.3(4) 76